AUTOMATIC QOS SYSTEM IN LINUX

Oldrich Plchot
Doctoral Degree Programme (4), FIT BUT
E-mail: iplchot@fit.vutbr.cz

Supervised by: Tomas KasSparek
E-mail: kasparek @fit.vutbr.cz

ABSTRACT

This paper deals with the possibilities how to guarantee the quality of service in the area of
computer networks using the GNU/Linux operating system. The goal of this work is to dis-
cuss the advantages and disadvantages of the tools available in GNU/Linux and to describe
the designed system which handles quality of service automatically. Designed system uses
a heuristics, which allows the user to set up the QoS without studying specific properties of
communication protocols on the network or application layer.

1 INTRODUCTION

We cannot imagine today’s world without possibility of easy to use and fast communication,
internet and multimedia. The number of small and large computer networks being connected to
the internet is still increasing and therefore the need of protecting these networks and ensuring
its users’ comfortable and effective work is increasing as well. Most of the small and middle
networks which are being connected to the internet are dealing with a problem of bottleneck in
the capacity of its connection to the international network.

In the area of computer networks, the term Quality of Service (QoS) means ability of the net-
work to achieve required parameters for different types of network applications over the line of
a given bandwidth. Different solutions of Quality of Service must deal not only with the simple
division of bandwidth, but also with the errors and problems which depends on the actual state
of the network, we are unable to influence, and it is impossible to forecast when they happen.
In many cases, appropriate setting of the system for quality of service at the access point to the
internet can save time and money of connected users.

In this paper we describe a system, which can cooperate with the traditional tools available in
the Linux operating system and which can the functionality to automatically adjust the QoS
according to the current conditions of the network.

2 EXISTING PROBLEMS WITH QOS

Most of existing solutions dealing with QoS are based on a principle of classification of individ-
ual packets and then assigning them to different priority queues. These systems work usually
on the network or application layer.

If the classification is done on the network layer, then the only information available for the
classification process are the data stored in the packet’s header. If we classify according to this
data, it is possible to successfully distinguish only limited number of services which have fixed
port number. However, some types of applications use random port numbers and in this case it is
impossible to correctly classify them, which means that they end up in the same class regardless
of an application which needs priority service (like VoIP) or an application which does not need
priority service (like P2P download). Somebody can object, that the field Type of Service in the
packet header can used, but most applications just ignore the setting of the correct ToS value
and on the top of it, this value can be changed by every router the packet passes through and it
is never guaranteed that the value really denotes real demand of the service.

Another possibility is an inspection of packet’s data on the application layer, when we compare
them against some known typical patterns. This approach not only is computationally expen-
sive, but it cannot correctly classify an encrypted traffic. The problem can also arise when some
new application or a protocol is created.

REALIZING QOS USING CLASSIFICATION OF DATA FLOWS

The result of these facts is that we cannot ensure correct classification of packets and subsequent
assignment of priorities, not even by combination of both methods mentioned above. But we
can look at this problem from the other side. If we are observing the traffic which is generated
by particular applications, we are able to guess into which class does this traffic belongs to, just
by observing the bandwidth characteristics it generates.

Every network application creates a connection, which is unambiguously identifiable by the
quadruple of data: source and destination IP address and port. Using these data, we are able
to class packets into particular flows and therefore we are able to observe the bandwidth char-
acteristics of a data flow they generates. The main information we will need to guess is what
type of application belongs to the data flow which has particular function of transfer speed and
time. These characteristics can even vary in time, so that interactive application enters the non-
interactive mode, which means it will be possible to even re-classify once classified data flow if
it changes it’s behavior. Another advantage of this approach is, that it works with the encrypted
traffic, because we do not need to look inside the packet.

On the figure 1 is depicted a situation when the user is running a graphical application remotely
and he is normally working. This is a type of data flow which requires higher priority, so that
the user can work interactively and effectively. On the other hand, on the figure 2 is depicted
a situation when user starts transmission of a large file after some time of interactive work like
browsing directories and typing some commands. When user starts transmitting a large file,
the connection does no longer need high priority, because user is waiting for the end of the file
transmission. The change of bandwidth of a given data flow is obvious from these two graphs.
As it was shown on the figures we can guess what type of data flow we are dealing with even
from the characteristic of one direction of the connection. But we can also use the fact, that in
most cases we need to transmit data in both directions, so that we can look at two characteristics
simultaneously and therefore increase the amount of information we can obtain. This approach
will allow us to classify flows more accurately and into more classes.

thruput (bytes/sec) nerlin, Fit, vuthr czspeanysherestat_==>_192, 168,0, 20364001 {throughput)

600000

500000

400000

300000

200000

100000

it fr——— ¥ S
16310530 16511300 16:11:30 ¢ 1611230

Figure 1: Interactive traffic over ssh

4 DESIGN OF THE SYSTEM

In order to analyze individual data flows on a interface (Ethernet), we have to capture all of the
packets passing through this interface. This is the work of a module called packet sniffer. We
use a multi-plattform library pcap, which provides simple and effective interface for capturing
packets.

When we obtain packets, we have to analyze them using the data stored in the IP header of each
packet. On the basis of these data, we can class the packets into the particular data flows. As
an appropriate data structure for storing all the data flows a combination of a hash table and a
circular buffer was chosen. We will store particular packets in the circular buffer and the key
into the hash table will be created using a data structure unambiguously identifying each data
flow.

Another module of the system works with data structure containing individual data flows and it
periodically evaluates the transfer speed in time and creates feature vector containing informa-
tion which will be used to classify flows into particular classes representing different types of
traffic. Values of this feature vector are normalized into the range (0, 1) according to the given
maximum available bandwidth.

We use a neural network (Fast Artificial Neural Network Library - FANN was used) in another
module flow classifier to classify feature vectors into the different classes. A fully connected
feed forward neural network with one hidden layer and bias neurons was chosen. This neural
network has thirty input neurons, which is also the size of an input layer, eighty neurons in a
hidden layer and 6 output neurons which is also the number of a target classes.

Once we have a data flow classified, the information from the classification and identification
of a particular data flow is input for another module, which uses a Linux packet filtering tool
iptables to set up the correct priority both in the input and output direction. For output direction,
the created iptables rule can look like this:

thruput (bytes/ses) merlin,Fit,vutbr oz;peanysher st at_==>_192,168,0, 20364525 (throughput)

600000
500000
406000
300000
200000

) | | F\R

16:51:40 16:52:00 16:52:20 16:52:40 16:53:00 16:53:20
tine

Figure 2: Non-interactive traffic over ssh

iptables -t mangle —-A MYSHAPER-OUT -p tcp -s 192.168.2.183 \
—-—sport 3723 -d 209.85.137.83 —--dport 443 -j MARK —--set-mark 22

We can translate this rule into natural language like this: All packets of data flow, originating
in our network on a device with IP address 192.168.2.183 using source port number 3723 and
ending on remote device with IP address 209.85.137.83 and port 443, are assigned mark 22.
This mark will be consequently used to classify the packets into a specific priority queue.

| Type of traffic (class) | Input direction | Output direction

1. Download - FTP, HTTP, sftp 5 3
2. Streaming video, audio

3. Interactive http, interactive ssh
4. Connection control

5. Voice over IP

6. Upload - FTP, HTTP, sftp

W = W]
| —| W M| W

Table 1: Classification into classes

Each type of traffic needs a different priority in each direction. For example, the download of a
large file should have a small priority in the input direction, but we do not have a reason to limit
it on the output. Another example can be VoIP which needs a high priority in both directions.
The chosen scheme can be found in table 1, where the highest number is the lowest priority and
vice versa.

The last part of this QoS system is a script which sets up a scheme of queuing disciplines on
the given network interfaces. This script sets up the parameters of a Linux kernel, which will
then queue the packets into the priority queues according to the information that was inserted

Sort packets Create vector

Packet sniffer |—3»| into flows > for classifier —»| Flow classifier

Y

A 4

Set per flow
priorities (iptables)

v

Enque packets into
Network interface (user defined priority
queues (/sbin/tc)

Figure 3: Scheme of a whole QoS system

into the packet in the previous module by iptables. The scheme of the system is shown on the
figure 3.

5 CONCLUSIONS AND POSSIBLE FUTURE WORK

The designed system is trying to deal with a problem of ensuring quality of service in a dif-
ferent way than the traditional systems. Instead of difficult and in most cases computationally
expensive examining of each packet, it works on top of data flows and computes a simple fea-
ture vector for classification. This process is not computationally intensive and works with any
application and also with encrypted traffic.

However this system is only a “proof of concept” and is far away to be optimal. This system
needs to store a huge amount of data structures which represents individual data flows and actual
state of a network traffic on the given network interfaces, thus the system consumes too much
memory to be used in production environment.

The future work on this subject could include finding optimal size of data structures used to store
the actual state of the network. There can be also done some experiments to find an optimal size
of feature vectors and an optimal structure of used neural network. There could be also explored
more ambitious plan and try to implement mechanisms into the network layer of operating
system in the kernel space, which would provide our feature vectors for the classification in
user space.

REFERENCES
[1] Plchot, O.: User Oriented QoS System, Master’s thesis, Brno, FIT VUT BRNO, 2007

[2] Stevens, R. W.: Unix Network Programming, Addison Wesley, 2004, ISBN 0-13-141155-1

[3] Brown, M. A.: Traffic Control Howto:
http://www.linux.com/howtos/Traffic-Control-HOWTO/index.shtml
October 2006.

